

Appendix A: Hydraulic conductivity data

Summary of packer and drillstrem testing: by Area/Domain, depth and stratigraphy

•	All data (all strat) Pre mining Tahmoor
•	Appin All
٠	DendA2
•	DendA3A
0	DendA3B
0	DendA5
•	DendA6
	SPCS Mean

Summary of packer and drillstrem testing: by Area/Domain, depth and stratigraphy

0 0	All data (all strat) Pre- mining Tahmoor
•	Appin All
٠	DendA2
•	DendA3A
0	DendA3B
0	DendA5
0	DendA6
	-WWSM Mean

Appendix B: Groundwater model history

In response to a request by WaterNSW, the following table summarises the history and key features of groundwater modelling for Dendrobium Mine.

Report	Project / Requirement	Software	Grid	Key features	Other features	Peer Review		
GHD, 2007.	Area 3	SEEP/W	2D "slice" or	2D slice model focussing on Area 3A.	Simulated mining: Areas 2-3A			
Document: 21/11716/03/AY116.	Application	v.6.20	cross-section model		Layers: n/a (finite element model). Recharge: estimated as ~2.5% of rainfall. Hydraulic conductivity: zones. Inflow calibration: not calibrated to inflow.			
Coffey, 2012.	Area 3B SMP	MODFLOW-	3D rectilinear	Fractured zone representation: 'Stacked Drains'.	Simulated mining: Areas 1-3B.	Noel		
Document: GEOTLCOV 24507AA-AB2.	Approval	V.3	grid. Detail around A3B.	Height of connected fracturing estimated by: Tammetta (2012) H.	Layers: 15. Recharge: estimated as 2.7% of rainfall. Hydraulic conductivity: zones. Inflow calibration: total mine inflow.	Merrick (Heritage Computing)		
HydroSimulations, 2013.	A3B SMP approval	MF- SURFACT	3D (as for Coffey,	Fracture zone representation: as for Coffey, 2012. Improved representation of topography.	Simulated mining: Areas 1-3B. Layers: 16 (swamp deposits added).			
Document: HC2013- 28.	condition	v.3	v.3	v.3	2012)	Improved simulation of watercourses (MODFLOW-SFR) and included swamp deposits/regolith.	Recharge: as per Coffey, 2012 Hydraulic conductivity: zones. Inflow calibration: total mine inflow.	
HydroSimulations, 2014.	A3B SMP M approval SU	MF- 3D SURFACT (as for Coffey,	Fractured zone represented: transient material properties (TMP).	Simulated mining: Areas 1-3B. Layers: 16.				
Document: HC2014- 04.	condition / DPIE request	v.3	2012)	Height of connected fracturing estimated by: Ditton (2012) A- zone.	Recharge: as per Coffey, 2012 Hydraulic conductivity: zones. Inflow calibration: total mine inflow.			
HydroSimulations, 2016.	Longwalls 14-18 SMP Application	MODFLOW- USG	3D (as for Coffey,	Fractured zone representation: Connected Linear Networks (CLN).	Simulated mining: Areas 1-3B. Layers: 16.			
Document: HC2016- 02c.		('transport') 2012)		 Height of connected fracturing estimated as Ditton (2014) A and as Tammetta H. First incorporation of surface cracking via time-varying material properties (TVM) package. Reservoirs simulated with transient stage for historical period. 	Recharge: soil moisture balance model calibrated against independent estimates. Hydraulic conductivity: zones. Inflow calibration: total mine inflow.			
HydroSimulations, 2017.	Longwalls 16-18 SMP Application	MF-USG-T	3D (as for Coffey,	Fractured zone representation: Stacked Drains with high conductance in line with PSM (2017) conceptualisation.	Simulated mining: Areas 1-3B. Layers: 17 (additional layer to allow swamps to sit	Frans Kalf (Kalf and		
Document: HS2017- 37e.			2012)	Assumed seam-to-surface connection as per PSM conceptualisation for >300m panels (otherwise Tammetta H). Incorporation of off-goaf valley closure via TVM. Improved representation of surface cracking depth, surface cracking modelled via TVM. Watercourses simulated w\ MODFLOW River package.	about uppermost rock layer). Recharge: soil moisture balance model calibrated against independent estimates. Hydraulic conductivity: zones. Inflow calibration: area-by-area calibration.	Associates)		
HydroSimulations, 2019a.	Longwall 17 SMP Application	MF-USG-T		Fractured zone representation: primarily Stacked Drains with high conductance in line with PSM (2017) conceptualisation.	Simulated mining: Areas 1-3B.			

Report	Project / Requirement	Software	Grid	Key features	Other features	Peer Review
Document: HS2018- 72c.			3D (as for Coffey, 2012)	Assumed seam-to-surface connection as per PSM conceptualisation for >300m panels (otherwise Tammetta H). Surface cracking and off-goaf valley closure via TVM.	Layers: 17. Recharge: soil moisture balance model calibrated against independent estimates. Hydraulic conductivity: zones. Inflow calibration: area-by-area calibration.	Frans Kalf (Kalf and Associates)
HydroSimulations, 2019b. Document: HS2019- 19g.	Longwall 20-21 SMP Application	MF-USG-T	3D (as for Coffey, 2012)	Fractured zone representation: primarily Stacked Drains with high conductance in line with PSM (2017) conceptualisation. Assumed seam-to-surface connection as per PSM conceptualisation for >300m panels (otherwise Tammetta H). Surface cracking and off-goaf valley closure via TVM.	Simulated mining: Areas 1-3B + 3C (20-21). Layers: 17 Recharge: soil moisture balance model calibrated against independent estimates and against BoM AWRA model. Hydraulic conductivity: zones. Inflow calibration: area-by-area calibration.	
HydroSimulations, 2019c. Document: HS2018- 76.	Area 5 and 6 EIS	MF-USG-T	3D unstructured mesh, detail around longwalls, local watercourses	Fractured zone representation: primarily Stacked Drains with new method for estimating conductance → better groundwater level and inflow calibration. Assumed seam-to-surface connection as per PSM conceptualisation for >300m panels (otherwise Tammetta H). Surface cracking / off-goaf valley closure via TVM.	Simulated mining: Areas 1-3B + 3C + A5 + A6 Layers: 17 Recharge: soil moisture balance model calibrated against independent estimates and against BoM AWRA model. Hydraulic conductivity: K/depth relationship and zones. Inflow calibration: area-by-area calibration.	Frans Kalf (Kalf and Associates)
SLR, 2020a Document: 665.10009-R02.	Longwall 19 SMP Application	MF-USG-T v.1.3	3D (as for Coffey, 2012)	Fractured zone representation: primarily Stacked Drains using drain conductance parameters from HydroSimulations, 2019c. Assumed seam-to-surface connection as per PSM conceptualisation for >300m panels (otherwise Tammetta H). Surface cracking / off-goaf valley closure via TVM.	Simulated mining: Areas 1-3B. Layers: 17 Recharge: soil moisture balance model calibrated against independent estimates and against BoM AWRA model. Hydraulic conductivity: zones. Inflow calibration: area-by-area calibration.	Frans Kalf (Kalf and Associates)
WatershedHG, 2020 and 2021		MF-USG-T v.1.4.0	3D unstructured.	Fractured zone representation: TVM, constrained by data from centreline goaf bore investigations (e.g. HGEO, 2020).	Simulated mining: Areas 1-3B + 3C (to LW23) Layers: 17	
Document: R014i4. (2020)	Longwall 18 SMP Application		Modified from HS (2019c). 50m regular	Surface cracking and off-goaf valley closure via TVM. Applied 'Stacked Drains' to improve estimation of surface water losses in headwater streams.	Recharge: soil moisture balance model calibrated against independent estimates and against BoM AWRA model.	
Document: R016i6. (2021)	Longwalls 22 and 23 SMP application		mesh applied in A3C/5/6 longwalls.		Hydraulic conductivity: K/depth relationship and zones. Inflow calibration: area-by-area calibration. Comparison and calibration to surface water losses from EOPs.	

Appendix C: Groundwater model temporal discretisation

Stage	SP	Days	DateFrom	DateTo	Scheduled Mining	Rainfall / Inflow signal	Total days
	1		Steady State				1
CALIBRATION	2	18993	1/01/1940	31/12/1991			18994
	3	3608	1/01/1992	16/11/2001			22602
	4	20	1//11/2001	6/12/2001			22622
	5	20	7/12/2001	26/12/2001			22642
	7	40	16/01/2002	24/02/2002			22002
	8	100	25/02/2002	4/06/2002			22702
	9	100	5/06/2002	12/09/2002			22902
	10	100	13/09/2002	21/12/2002			23002
	11	200	22/12/2002	9/07/2003			23202
	12	200	10/07/2003	25/01/2004			23402
	13	200	26/01/2004	12/08/2004			23602
	14	232	13/08/2004	1/04/2005			23834
	15	90	2/04/2005	30/06/2005	Start LW1		23924
	16	90	1/07/2005	28/09/2005			24014
	17	74	29/09/2005	11/12/2005	End LW1		24088
	18	60	12/12/2005	9/02/2006			24148
	19	60	10/02/2006	10/04/2006	Start LW2		24208
	20	95	11/04/2006	14/07/2006			24303
	21	95	18/10/2006	1//10/2006	End LW/2		24398
	22	99	22/01/2007	30/04/2007	Start I W3		24494
	24	44	1/05/2007	13/06/2007	Start Errs		24637
	25	4	14/06/2007	17/06/2007		A2rain1	24641
	26	8	18/06/2007	25/06/2007		A2week1	24649
	27	43	26/06/2007	7/08/2007		A2inflow1	24692
	28	100	8/08/2007	15/11/2007	End LW3		24792
	29	33	16/11/2007	18/12/2007			24825
	30	47	19/12/2007	3/02/2008	Start LW4		24872
	31	6	4/02/2008	9/02/2008		A2 Rain2	24878
	32	8	10/02/2008	17/02/2008		A2 week2	24886
	33	36	18/02/2008	24/03/2008		A2 inflow2	24922
	34	50	25/03/2008	13/05/2008			24972
	35	32	14/05/2008	14/06/2008	End LW/4		25004
	30	31	3/10/2008	2/10/2008			25114
	37	30	3/10/2008	2/11/2008			25145
	39	31	3/12/2008	2/01/2009	Start LW5		25206
	40	60	3/01/2009	3/03/2009	Start Erro		25266
	41	60	4/03/2009	2/05/2009			25326
	42	17	3/05/2009	19/05/2009			25343
	43	5	20/05/2009	24/05/2009		A2rain3	25348
	44	8	25/05/2009	1/06/2009		A2week3	25356
	45	22	2/06/2009	23/06/2009		A2inflow3	25378
	46	88	24/06/2009	19/09/2009			25466
	47	90	20/09/2009	18/12/2009	End LW5		25556
	48	53	19/12/2009	9/02/2010	Chart LVN/C		25609
	49	105	26/05/2010	25/05/2010	Start LVVD	A 2 rain 4	25714
	51	8	5/06/2010	12/06/2010		A210114 A2week4	25732
	52	22	13/06/2010	4/07/2010		A2inflow4	25754
	53	75	5/07/2010	17/09/2010			25829
	54	72	18/09/2010	28/11/2010			25901
	55	9	29/11/2010	7/12/2010		A2rain5	25910
	56	8	8/12/2010	15/12/2010		A2week5	25918
	57	22	16/12/2010	6/01/2011		A2inflow5	25940
	58	71	7/01/2011	18/03/2011			26011
	59	4	19/03/2011	22/03/2011		A2rain6	26015
	60	8	23/03/2011	30/03/2011	End LW6	A2week6	26023
	61	60	31/03/2011	29/05/2011	StartLW7	A2inflow6	26083
	62	4	30/05/2011	2/06/2011		A2rain/	26087
	63	8 20	3/06/2011	10/06/2011		AZWEEK7	26095
	65	5	19/07/2011	23/07/2011	·	A2mmow7	20135
	66	8	24/07/2011	31/07/2011		A2inflow8	26146
	67	22	1/08/2011	22/08/2011		A2inflow8	26168
	68	69	23/08/2011	30/10/2011			26237
	69	85	31/10/2011	23/01/2012	End LW7		26322
	70	35	24/01/2012	27/02/2012	Start LW8		26357

Stage	SP	Days	DateFrom	DateTo	Scheduled Mining	Rainfall / Inflow signal	Total days
	71	11	28/02/2012	9/03/2012		A2rain9	26368
	72	8	10/03/2012	17/03/2012		A2week9	26376
	73	31	18/03/2012	17/04/2012		A2inflow9	26407
	74	85	18/04/2012	11/07/2012			26492
	75	85	12/07/2012	4/10/2012		I	26577
	76	86	5/10/2012	29/12/2012	End LW8		26663
	77	41	30/12/2012	8/02/2013		I	26704
	78	11	9/02/2013	19/02/2013	Start LW9		26715
	79	12	20/02/2013	3/03/2013		A2rain10	26727
	80	8	4/03/2013	11/03/2013		A2week10	26735
	81	22	12/03/2013	2/04/2013		A2inflow10	26757
	82	80	3/04/2013	21/06/2013			26837
	83	9	22/06/2013	30/06/2013		A2rain11	26846
	84	8	1/07/2013	8/07/2013		A2week11	26854
	85	22	9/07/2013	30/07/2013		A2inflow11	26876
	86	48	31/07/2013	16/09/2013	E - 11140		26924
	87	106	1//09/2013	31/12/2013	End LW9	I	27030
	88	12	1/01/2014	18/03/2014	Start LW10	A2roin12	2/10/
	89	13	19/03/2014	31/03/2014			27120
	90	8 22	1/04/2014	8/04/2014		AZWEEK1Z	27120
	91	107	9/04/2014	30/04/2014		AZIIIIOWIZ	27150
	92	107	1/05/2014	15/08/2014			27257
	95	0	10/08/2014	27/08/2014		AZIdIII15	27203
	94	8 22	28/08/2014	4/09/2014			27277
	95	105	27/09/2014	10/01/2014	End LW/10	AZIIIIUW15	27295
	90	100	11/01/2014	16/04/2015	Ctart \//11	-	27403
	98	16	17/04/2015	2/05/2015		A2rain14	27517
	99	8	3/05/2015	10/05/2015		Δ2week14	27525
	100	45	11/05/2015	24/06/2015		Δ2inflow14	27570
	100	196	25/06/2015	6/01/2016	End I W11	A211110W1-1	27766
	102	149	7/01/2016	3/06/2016	Start I W 12		27915
	103	7	4/06/2016	10/06/2016	51011 217 22	rain15	27922
	104	20	11/06/2016	30/06/2016		Tunits	27942
	105	233	1/07/2016	18/02/2017	Fnd I W 12		28175
	106	71	19/02/2017	30/04/2017	Start LW 13	.	28246
	107	92	1/05/2017	31/07/2017		-	28338
	108	92	1/08/2017	31/10/2017			28430
	109	120	1/11/2017	28/02/2018	End LW 13		28550
	110	61	1/03/2018	30/04/2018	Start LW 14		28611
	111	92	1/05/2018	31/07/2018			28703
	112	92	1/08/2018	31/10/2018			28795
	113	61	1/11/2018	31/12/2018	End LW 14		28856
	114	90	1/01/2019	31/03/2019	Start LW 15		28946
	115	61	1/04/2019	31/05/2019			29007
	116	61	1/06/2019	31/07/2019			29068
	117	61	1/08/2019	30/09/2019			29129
	118	92	1/10/2019	31/12/2019	End LW 15		29221
	119	59	1/01/2020	28/02/2020		I	29280
	120	62	29/02/2020	30/04/2020	Start LW 16		29342
	121	61	1/05/2020	30/06/2020			29403
	122	92	1/07/2020	30/09/2020			29495
	123	61	1/10/2020	30/11/2020	End LW 16		29556
	124	62	1/12/2020	31/01/2021	Start LW 17		29618
PREDICTION	125	59	1/02/2021	31/03/2021			29677
	120	61	1/04/2021	31/05/2021			29730
	127	61	1/00/2021	31/07/2021	End 1.11/ 17	i	29795
	120	61	1/10/2021	30/11/2021	Ctart I W/ 18		29800
	130	31	1/12/2021	31/12/2021			29952
	131	59	1/01/2022	28/02/2022			30011
	132	61	1/03/2022	30/04/2022	Fnd LW 18		30072
	133	61	1/05/2022	30/06/2022	Start LW 19		30133
	134	31	1/07/2022	31/07/2022		-	30164
	135	61	1/08/2022	30/09/2022			30225
	136	92	1/10/2022	31/12/2022	End LW 19		30317
	137	31	1/01/2023	31/01/2023	Start LW 21	1	30348
	138	59	1/02/2023	31/03/2023			30407
	139	30	1/04/2023	30/04/2023	End LW 21		30437
	140	71	1/05/2023	10/07/2023			30508

Stage	SP	Days	DateFrom	DateTo	Scheduled Mining	Rainfall / Inflow signal	Total days
	141	52	11/07/2023	31/08/2023	Start LW 22		30560
	142	122	1/09/2023	31/12/2023			30682
	143	121	1/01/2024	30/04/2024	End LW 22		30803
	144	123	1/05/2024	31/08/2024			30926
	145	30	1/09/2024	30/09/2024	Start LW 23		30956
	146	151	1/10/2024	28/02/2025			31107
	147	92	1/03/2025	31/05/2025	End LW 23		31199
	148	92	1/06/2025	31/08/2025			31291
	149	61	1/09/2025	31/10/2025	Start LW20		31352
	150	61	1/11/2025	31/12/2025			31413
	151	90	1/01/2026	31/03/2026	End LW20		31503
	152	153	1/04/2026	31/08/2026			31656
POST-MINING	153	122	1/09/2026	31/12/2026			31778
	154	90	1/01/2027	31/03/2027			31868
	155	91	1/04/2027	30/06/2027	End LW 501W		31959
	156	153	1/07/2027	30/11/2027	Start LW 502W		32112
	157	122	1/12/2027	31/03/2028			32234
	158	91	1/04/2028	30/06/2028	End LW 502W		32325
	159	153	1/07/2028	30/11/2028	Start LW 503W		32478
	160	121	1/12/2028	31/03/2029			32599
	161	91	1/04/2029	30/06/2029	End LW 503W		32690
	162	153	1/07/2029	30/11/2029	Start LW 504W		32843
	163	121	1/12/2029	31/03/2030			32964
	164	122	1/04/2030	31/07/2030	End LW 504W		33086
	165	61	1/08/2030	30/09/2030	Start LW 505WA		33147
	166	61	1/10/2030	30/11/2030			33208
	167	31	1/12/2030	31/12/2030	End LW 505WA		33239
	168	365	1/01/2031	31/12/2031	Start LW 505WB		33604
	169	366	1/01/2032	31/12/2032	End LW 505WB		33970
	170	365	1/01/2033	31/12/2033	Start LW 505WC		34335
	171	365	1/01/2034	31/12/2034			34700
	172	365	1/01/2035	31/12/2035	End LW 505WC		35065
	173	366	1/01/2036	31/12/2036	Start LW 506WA		35431
	174	365	1/01/2037	31/12/2037			35796
	175	365	1/01/2038	31/12/2038	End LW 506WA		36161
	176	365	1/01/2039	31/12/2039	Start LW506WB		36526
	177	366	1/01/2040	31/12/2040			36892
	178	365	1/01/2041	31/12/2041	End LW506WB		37257
	179	365	1/01/2042	31/12/2042	Start LW 506WC		37622
	180	365	1/01/2043	31/12/2043			37987
	181	366	1/01/2044	31/12/2044	End LW 506WC		38353
	182	365	1/01/2045	31/12/2045	Start LW507W		38718
	183	365	1/01/2046	31/12/2046			39083
	184	365	1/01/2047	31/12/2047			39448
	185	366	1/01/2048	31/12/2048	End LW 507W		39814
	186	365	1/01/2049	31/12/2049	Start LW 508WA		40179
	187	365	1/01/2050	31/12/2050			40544
	188	365	1/01/2051	31/12/2051	End LW 508WA		40909
	189	366	1/01/2052	31/12/2052	Start LW 508WB		41275
	190	365	1/01/2053	31/12/2053			41640
	191	365	1/01/2054	31/12/2054	End LW 508WB		42005
	192	365	1/01/2055	31/12/2055	Start LW 502E		42370
	193	366	1/01/2056	31/12/2056			42736
	194	365	1/01/2057	31/12/2057	End LW 502E		43101
	195	365	1/01/2058	31/12/2058	Start LW503E		43466
	196	365	1/01/2059	31/12/2059			43831
	197	366	1/01/2060	31/12/2060	End LW503E		44197
	198	1826	1/01/2061	31/12/2065	Start LW 501S		46023
	199	1826	1/01/2066	31/12/2070			47849
	200	3653	1/01/2071	31/12/2080	End LW501S		51502
	201	3652	1/01/2081	31/12/2090	Start LW 502S		55154
	202	3652	1/01/2091	31/12/2100			58806
	203	36524	1/01/2101	31/12/2200	End LW502S		95330

E:\DENDROBIUM\Model\GWmodel\Construction\Time\[StressPeriods_DND5v1_Jan2021.xlsx]timing_DNDv5_SMP-LW22-23

Appendix D: Groundwater model 'Confidence Classification'

The following pages present the Model Confidence Classification as per the *Australian Groundwater Modelling Guidelines* (Barnett *et a*l., 2012).

Model Confidence Classification: Dendrobium Area 3C: Longwalls 22-23 SMP - Groundwater model. (April 2021)	Confidence level classification Class 3	Data Data Spatial and temporal distribution of groundwater head observations adequately define groundwater behaviour, especially in areas of greatest interest and where outcomes are to be reported. Spatial distribution of bore logs and associated stratigraphic interpretations clearly define aquifer geometry. Reliable metered groundwater extraction and injection data is available. Rainfall and evaporation data is available. Aquifer-testing data to define key parameters. Streamflow and stage measurements are available with reliable baseflow estimates at a number of points. Reliable Inrigation application data (where relevant) is available. Good quality and adequate spatial coverage of digital elevation model to define spatial coverage evaluable.	 Calibration Adequate validation* is demonstrated. Scaled RMS error (refer Chapter 5) or other calibration statistics are acceptable. Long-term trends are adequately replicated where these are important. Seasonal fluctuations are adequately replicated where these are important. Transient calibration is current, i.e. uses recent data. Model is calibrated to heads and fluxes. Observations of the key modelling outcomes dataset is used in calibration. Inflow GWLS Watercourse impacts Reservoir leakage 	 Prediction Length of predictive model is not excessive compared to length of calibration period. Temporal discretisation used in the predictive model is consistent with the transient calibration. Level and type of stresses included in the predictive model are within the range of those used in the transient calibration. Model validation* suggests calibration is appropriate for locations and/or times outside the calibration model. Steady-state predictions used when the model is calibrated in steady-state only. 	 Key indicator Key calibration statistics are acceptable and meet agreed targets. Model predictive time frame is less than 3 times the duration of transient calibration. Stresses are not more than 2 times greater than those included in calibration. Temporal discretisation in predictive model is the same as that used in calibration. Mass balance closure error is less than 0.5% of total. Model parameters consistent with conceptualisation. 	 Examples of specific Uses Suitable for predicting groundwater responses to arbitrary changes in applied stress or hydrological conditions anywhere within the model domain. Provide information for sustainable yield assessments for high- value regional aquifer systems. Evaluation and management of potentially high-risk impacts. 	
					 Appropriate computational methods used with appropriate spatial discretisation to model the problem. The model has been reviewed and deemed fit for purpose by an experienced, independent hydrogeologist with modelling experience. 	 complex mine- dewatering schemes, salt-interception schemes or water- allocation plans. Simulating the interaction between groundwater and surface water bodies to a level of reliability required for dynamic linkage to surface water models. Assessment of complex, large-scale solute transport processes. 	
	Class 2 Cont'd overleaf	 Groundwater head observations and bore logs are available but may not provide adequate coverage throughout the model domain. 	 Validation* is either not undertaken or is not demonstrated for the full model domain. Calibration statistics are generally reasonable but may suggest significant errors in parts of the 	 Transient calibration vover a short time frame compared to that of prediction. Temporal discretisation used in the predictive model is different from that used in transient 	 Key calibration statistics suggest poor calibration in parts of the model domain. Model predictive time frame is between 3 and 10 times the duration of transient calibration. Stresses are between 2 and 5 times greater than those 	 Prediction of impacts of proposed developments in medium value aquifers. Evaluation and management of medium risk impacts. 	

Table 2.4: Model confidence level electification characteristics and indicators

(*Refer Chapter 5 for discussion around validation as part of the calibration process.)

Appendix E: Modelled hydraulic properties

Calibrated Hydraulic Properties (K and S)

Layer	Zone#	Geology	abbrev.	Kh factor	K _h m/d	K _v m/d	Ss m-1	Sy
1	11	Swamps		n/a	1	0.05		0.3
	1, 3	Alluvium		n/a	10, 3	0.3, 5e-3		0.1
	2	Wianamatta Formation	WMFM	n/a	0.015	2.0E-05		0.1
	10	Regolith		n/a	0.03	0.03		0.1
2	20	Hawkesbury Sst (upper)	HBSS	1.3	K-depth	1E-05	5E-03	0.05
3	30	Hawkesbury Sst (mid)	HBSS	0.6	K-depth	1E-04	1E-06	0.025
4	40	Hawkesbury Sst (lower)	HBSS	1	K-depth	3E-05	1E-06	0.012
5	50	Bald Hill Claystone	BACS	0.03	K-depth	3E-06	1E-06	0.006
	51	Crinanite (weathered)		0.8	K-depth	3E-03	5E-04	0.01
6-11	multiple	Crinanite		0.05	K-depth	5E-05	5E-04	0.01
6	60	Bulgo Sst (upper)	BGSS	0.2	K-depth	1E-04	9E-07	0.008
	61	Bulgo Sst (upper)	BGSS	0.25	K-depth	5E-05	9E-07	0.008
	62	Bulgo Sst (upper) / CVSS	BGSS	0.14	K-depth	1E-06	9E-07	0.008
	64	Bulgo Sst (upper) (A2 outcrop)	BGSS	0.3	K-depth	2E-06	9E-07	0.008
7	70	Bulgo Sst (lower)	BGSS	0.3	K-depth	2E-05	8E-07	0.007
	71	Bulgo Sst (lower)	BGSS	0.2	K-depth	5E-05	8E-07	0.007
	72	Bulgo Sst (lower) / CVSS	BGSS	0.2	K-depth	2E-06	8E-07	0.007
	74	BGSS (lwr) near A2/crinanite	BGSS	0.6	K-depth	6E-06	8E-07	0.007
8	80	Stanwell Park Claystone	SPCS	0.25	K-depth	3E-05	7E-07	0.005
	81	Stanwell Park Claystone	SPCS	0.25	K-depth	2E-06	7E-07	0.005
	83	SPCS, near A2	SPCS	2	K-depth	4E-06	7E-07	0.005
9	90-92	Scarborough Sst	SBSS	2	K-depth	1E-06	6E-06	0.01
10	100	Wombarra Claystone	WBCS	0.25	K-depth	5E-06	5E-07	0.0035
11	110	Coalcliff Sandstone	CCSS	1	K-depth	7E-06	4E-07	0.004
	111	Coalcliff Sandstone	CCSS	0.5	K-depth	5E-06	4E-07	0.004
12	120	Bulli Seam	BUSM	20	K-depth	1E-06	2E-07	0.004
	121	Bulli Seam – cindered	BUSM	0.4	K-depth	6E-06	1E-06	0.016
	123	Bulli Seam – faulted (mylonite)	BUSM	0.1	K-depth	3E-05	1E-06	0.016
13	130	Lawrence and Loddon Ssts	LDSS	1	K-depth	1E-06	2E-07	0.004
	131	Nepheline syenite		0.4	K-depth	2E-06	3E-07	0.005
	132	Fault/mylonite		0.3	K-depth	9E-06	3E-07	0.005
14	140	Wongawilli Seam	WWSM	40	K-depth	1E-06	2E-07	0.004
	141	Nepheline syenite		0.4	K-depth	3E-06	4E-06	0.02
	142	Wongawilli Seam – cindered	WWSM	0.5	K-depth	2E-06	3E-06	0.012
	143	Fault/mylonite		0.5	K-depth	9E-06	1E-06	0.015
15	150	Kembla Sandstone	KBSS	1	K-depth	3E-05	3E-07	0.0045
	151	Kembla Sandstone – outcrop	KBSS	1	K-depth	1E-05	1E-04	0.02
	152	Kembla Sandstone – outcrop	KBSS	1	K-depth	8E-04	1E-04	0.02
16	160	lower Permian Coal Meas.	IPCM	1	K-depth	1E-05	3E-07	0.004
	161	lower Permian Coal Meas.	IPCM	1	K-depth	8E-04	3E-06	0.03
17	170	Shoalhaven Group		1	K-depth	2E-06	3E-07	0.005

"K-depth" = means that Kh is primarily determined by depth of mid-point of model cell (see Equation 1 and 2).

Kh factor used to provide additional control based on lithology, facies variation. The K from the K-w-depth relationship is multiplied by this factor. DND5_mesh_Kwdepth_5v44.xlsx

Appendix F:Modelled groundwater level calibration hydrographs

.

Appendix G: Modelled groundwater level maps

WATERSHED Hydrogeo

A 0 0.5 1 1.5 km Map Scale: 1:65,000 @ A4 GDA 1994 MGA Zone 56

úì

Dendrobium - Existing Workings
 Dendrobium - Future Workings
 10m groundwater level contour
 50m groundwater level contour
 River

ngs ---- Creek gs ---- Lake / reservoir ur ---- Mined area ur ----- Model domain extent

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: Water table -Pre-mining

Groundwater level contour (mAHD)

River

Creek

Model domain extent

Inactive model cells

шi

Map Scale: 1:65,000 @ A4

GDA 1994 MGA Zone 56

WATERSHED HYDROGEO

IMC | Dendrobium Mine

Modelled groundwater levels and depth to water: lower Hawkesbury Sandstone - Pre-mining

Model domain extent

Inactive model cells

Ú.

GDA 1994 MGA Zone 56

River

Creek

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: Bulgo Sandstone - Pre-mining

ш

GDA 1994 MGA Zone 56

River

Creek

Inactive model cells

WATERSHED Hydrogeo

IMC | Dendrobium Mine

Modelled groundwater levels and depth to water: Wongawilli Coal Seam - Pre-mining

Dendrobium - Future Workings

10m groundwater level contour

50m groundwater level contour

Lake / reservoir

Model domain extent

Mined area

úî

0.5

Map Scale: 1:65,000 @ A4

GDA 1994 MGA Zone 56

1 1.5 km

River

IMC | Dendrobium Mine

Modelled groundwater levels and depth to water: Water table -June 2020

Creek

LLI.

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: lower Hawkesbury Sandstone - June 2020

WATERSHED Hydrogeo

Map Scale: 1:65,000 @ A4 GDA 1994 MGA Zone 56

0.5

Ú.

- Dendrobium Existing Workings Dendrobium - Future Workings Groundwater level contour (mAHD) River
- Creek

Lake / reservoir Mined area Model domain extent Inactive model cells

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: Bulgo Sandstone - June 2020

ш

GDA 1994 MGA Zone 56

River

Creek

Inactive model cells

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: Wongawilli Coal Seam - June 2020

WATERSHED Hydrogeo

IMC | Dendrobium Mine

Modelled groundwater levels and depth to water: Water table -August 2026 (end of Longwall 23).

Figure G-9

 A
 0
 0.5
 1
 1.5 km
 E

 Map Scale:
 1:65,000
 @ A4
 1
 1

 GDA 1994 MGA Zone 56
 55
 55
 55

úì

- Dendrobium Existing Workings Dendrobium - Future Workings 10m groundwater level contour 50m groundwater level contour
- River
- contour Mined area contour Model domain extent

Creek

Lake / reservoir

Creek

Ú.

WATERSHED Hydrogeo

IMC | Dendrobium Mine

Modelled groundwater levels and depth to water: lower Hawkesbury Sandstone - August 2026 (end of Longwall 23)

WATERSHED Hydrogeo

IMC | Dendrobium Mine

Modelled groundwater levels and depth to water: Bulgo Sandstone - August 2026 (end of Longwall 23)

Map Scale: 1:65,000 @ A4 GDA 1994 MGA Zone 56

0.5

1 1.5 km

Ú.

- Dendrobium Existing Workings
 Dendrobium Future Workings
 Groundwater level contour (mAHD)
 River
 Creek
- Lake / reservoir Mined area Model domain extent

ú

IMC | Dendrobium Mine

Modelled groundwater levels and depth to water: Wongawilli Coal Seam - August 2026 (end of Longwall 23)

WATERSHED Hydrogeo

Modelled groundwater levels and depth to water: Water table - 2200.

1 1.5 km

0.5

Map Scale: 1:65,000 @ A4

úì

Dendrobium - Future Workings 10m groundwater level contour 50m groundwater level contour River

Dendrobium - Existing Workings

Mined area Model domain extent

Lake / reservoir

Creek

Inactive model cells

Ú.

GDA 1994 MGA Zone 56

River

Creek

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: lower Hawkesbury Sandstone - 2200

WATERSHED Hydrogeo

N Map Scale: 1:65,000 @A4 GDA 1994 MGA Zone 56

0.5

1 1.5 km

Ш.

Dendrobium - Existing Workings
 Dendrobium - Future Workings
 Groundwater level contour (mAHD)
 River

Creek

Lake / reservoir Mined area Model domain extent Inactive model cells

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: Bulgo Sandstone - 2200

шî

GDA 1994 MGA Zone 56

River

Creek

Inactive model cells

IMC | Dendrobium Mine Modelled groundwater levels and depth to water: Wongawilli Coal Seam - 2200

Appendix H: Predicted surface water losses

E:\DENDROBIUM\Model\GWmodel\Processing\Zonebudget\SWtake\ Riv&Lake_BaseflowCapture_CalcSWImpactsV2_Dend_DND5TR55-61_LW22.xlsx

1

E:\DENDROBIUM\Model\GWmodel\Processing\Zonebudget\SWtake\ Riv&Lake_BaseflowCapture_CalcSWImpactsV2_Dend_DND5TR55-61_LW22.xlsx

E:\DENDROBIUM\Model\GWmodel\Processing\Zonebudget\SWtake\ Riv&Lake_BaseflowCapture_CalcSWImpactsV2_Dend_DND5TR55-61_LW22.xlsx

E:\DENDROBIUM\Model\GWmodel\Processing\Zonebudget\SWtake\ Riv&Lake BaseflowCapture CalcSWImpactsV2 Dend DND5TR55-61 LW22.xlsx 2055

⁽just in the lower Wongawilli Ck zone, d/s WC21)

