

AVON DAM MONITORING BOREHOLES REPORT

September 2015 Melinda Smart – Supervisor Brownfields Exploration Energy and Engineering

S2313 AND S2314 MONITORING BOREHOLES

Avon Dam Hole 1 (S2313) and Avon Dam Hole 2 (S2314) were drilled in Dendrobium Area 3B during the period June-August 2015, for Dams Safety Committee monitoring and reporting purposes.

CONTENTS

S2313 and S2314 Monitoring Boreholes	1
Introduction	3
Avon Dam Hole 1 (S2313)	5
Drilling and Testing Details	5
Geological Logging	5
Packer Testing and Falling Head Test	5
Laboratory UCS Geotechnical Testing	7
Permeability/Porosity Testing of Core Samples	7
Geophysical Logging	8
Flowmeter and Nuclear Magnetic (NMR) Logging	8
Instrumentation	9
Avon Dam Hole 2 (S2314)	11
Drilling and Testing Details	11
Geological Logging	11
Packer Testing and Falling Head Test	11
Laboratory UCS Geotechnical Testing	13
Permeability/Porosity Testing of Core Samples	14
Geophysical Logging	14
Flowmeter and Nuclear Magnetic (NMR) Logging	15
Instrumentation	15
Appendix	17
Appendix 1 - S2313 Lithology, Geotechnical and Geophysical Graphic	18
Appendix 2 - S2313 Core Photography	22
Appendix 3 - S2313 Lab Geotechnical Results	29
Appendix 4 - S2313 Flow Log Graphic	41
Appendix 5 - S2313 NMR Log Graphic	45
Appendix 6 - S2314 Lithology, Geotechnical and Geophysical Graphic	
Appendix 7 - S2314 Core Photography	51
Appendix 8 - S2314 Lab Geotechnical Results	56
Appendix 9 - S2314 Flow Log Graphic	69
Appendix 10 - S2314 NMR Log Graphic	74

INTRODUCTION

The Illawarra Coal *Energy and Engineering* Exploration Team were tasked with drilling, testing & instrumenting two boreholes in Dendrobium Area 3B, for the purpose of characterising & monitoring the geology & hydrogeology of the 'barrier pillar' between Avon Reservoir and the footprint of longwalls in Area 3B. The holes were proposed by Illawarra Coal (IC) as part of the monitoring requirement for Area 3B. The NSW Dams Safety Committee (DSC) confirmed the requirement for monitoring in their letter dated 15 July 2014. DSC Avon Dam Hole 1 (S2313) is located adjacent to the western end of Dendrobium Longwall 12, and DSC Avon Dam Hole 2 (S2314) is located adjacent to the western end of Dendrobium Longwall 13 & 14. Refer to Figure 1 for the location of the DSC Avon holes relative to the Dendrobium Mine plan. At the time of drilling these monitoring holes, Dendrobium Longwall 11 was being extracted. The location of S2313 and S2314 ensures adequate pre-mining data will be obtained from future Dendrobium longwall mining. Additional holes are proposed in the barrier pillar adjacent to Longwalls 15, 16 & 17. Refer Figure 1, green borehole locations. The additional holes will be drilled to ensure there is sufficient baseline data available, prior to extraction.

Figure 1: Location of S2313 and S2314 relative to Dendrobium Mine plan.

The two holes were HQ cored from the surface to the top of the Bulgo Sandstone (BGSS). The BGSS is the upper unit of a collective stratigraphic group also referred to as the Colo Vale Sandstone (CVSS). The core was logged by a geologist; noting lithology, geotechnical zones and defects, core recovery and rock-quality designation (RQD). Additional geotechnical testing on core

conducted after drilling included point load testing and UCS testing on core samples. Hydrogeological testing included porosity & permeability testing of core samples, Lugeon packer testing at 6m intervals and hydraulic conductivity analysis of the entire hole and a falling head test of one higher permeability zone identified in S2313. Both holes had a normal suite of geophysical logs completed, including flow logging, optical televiewer and acoustic scanner.

Upon completion of all testing, each borehole was installed with a time-domain reflector (TDR) cable, three piezometers and three water pumps. Two of the pumps and piezometers are set at nominated horizons in the Hawkesbury Sandstone (HBSS), and the third pump and piezometer is installed in the BGSS. The TDR cable enables the hole to be monitored for deformation/shear.

AVON DAM HOLE 1 (S2313)

DRILLING AND TESTING DETAILS

Lucas Drilling mobilised to site on 10/06/2015 with tracked drilling rig DRS096. Coring commenced on 12/06/2015. During coring operations, gradual water loss conditions were experienced, with total water loss occurring at 106m. Coring continued to total depth of 194.8m, completed on 25/06/2015 (delayed due to restricted Catchment access during wet weather).

Packer testing of the hole commenced on 25/06/2015 by Strata Control Technology (SCT). Packer testing was interrupted for geophysical logging from 29/06/2015-30/06/2015 by Weatherford, with packer testing completed on 07/07/2015. At the completion of packer testing, the hole was reamed out to 123mm by Lucas Drilling to enable sufficient room for equipment installation from 07/07/2015-09/07/2015, with drill rig demobilisation occurring on 10/07/2015. Flow and NMR logging was completed on 07/08/2015 by Surtron. The hole was revisited by DRS096 briefly on 09/09/2015 to complete a falling head test on the interval 101-113m, based on analysis of the packer testing data that indicated higher hydraulic conductivity results in this zone.

GEOLOGICAL LOGGING

All core was logged on site for lithology type and geotechnical defects. Detailed data is recorded in Micromine GBIS software package, and available upon request from the *Energy and Engineering* Exploration Team. Normal lithological conditions for the HBSS, Newport Formation (NPFM), Garie Formation (GRFM), Bald Hill Claystone (BACS) and upper BGSS were encountered. Considerable bedding plane and joint fractures were recorded throughout the HBSS as expected, and moderately abundant friable and jointed zones were present in the BACS. Four very minor faults were logged by the geologist, based on polished to slickensided fracture surfaces that indicate small movement. No major shear or faulted zones were present in the core.

For a graphic report illustrating logged lithology and defects against geophysical data, please refer to Appendix 1 - S2313 Lithology, Geotechnical and Geophysical Graphic. To view a compilation of the photographed core, refer to Appendix 2 - S2313 Core Photography(detailed photographs available upon request).

PACKER TESTING AND FALLING HEAD TEST

SCT were engaged to complete Lugeon-style packer testing and hydraulic conductivity analysis. The scope of work involved packer testing from surface to the bottom of the borehole. A 6m straddle packer assembly was used to isolate sections of the borehole, and water injected into these zones to record hydraulic conductivity.

Results of the packer testing indicate that hydraulic conductivity of the strata ranged from less than 1.0^{-11} m/s in the BACS to a maximum of 3.2^{-6} m/s towards the base of the HBSS. The lower

limit of the testing equipment is 1.0⁻¹¹ m/s. Lithology is a principal control on hydraulic conductivity; with zero flow measured in the BACS, and measureable hydraulic conductivities ranging from 2.2⁻¹⁰ m/s to 3.2⁻⁶ m/s in the HBSS and BGSS. A comparison of hydraulic conductivity with logged defects indicates that there is not a strong relationship between fracture frequency and hydraulic conductivity. However, a near vertical joint was identified in the high conductivity zone from 101.25-113.25m towards the lower HBSS. These findings are summarised in the chart prepared by SCT in Figure 2.

Figure 2: Hydraulic conductivity summary for S2313

The packer test report prepared by SCT is available from the *Energy and Engineering* Exploration Team upon request.

Following the analysis of the hydraulic conductivities, a zone of higher permeability was identified in the lower HBSS from 101.25-113.25m. Based on this, it was decided to investigate the hydraulic conductivity further via a falling head test, conducted by SCT. Falling head tests are performed in a packer isolated interval by charging the rods with water and measuring the resulting water level decline until a near static condition is observed. Hydraulic conductivity of the interval was calculated via a few different methods, with results that were consistent with each other. SCT have reported a hydraulic conductivity of the interval of 1.0×10^{-6} m/s.

The falling head test report prepared by SCT is available from the *Energy and Engineering* Exploration Team upon request.

LABORATORY UCS GEOTECHNICAL TESTING

Eleven geotechnical samples were collated from core and sent to STS for testing of unconfined compressive strength (UCS), elastic and sonic properties. Samples were collected at approximately 10-20m intervals where possible. Results provide point data of the UCS of the intact rock sample, which is the amount of compressive force per unit area applied in a single (uniaxial) direction required to induce failure. Lab UCS results on this borehole widely ranged from a minimum of 11.2 MPa in the upper HBSS, to a maximum of 98.9 MPa in the NPFM.

The results collated by STS are provided as Appendix 3 - S2313 Lab Geotechnical Results

The lab UCS dataset acts as a useful comparison to UCS figures calculated from sonic geophysical data of the entire borehole (refer to Appendix 1 - S2313 Lithology, Geotechnical and Geophysical Graphic for this graphic). The UCS and sonic velocity are geophysical measurement of compression waves travelling through rock and are widely correlated to predict *in situ* rock strength.

PERMEABILITY/POROSITY TESTING OF CORE SAMPLES

Thirteen samples were collated from core and sent to Core Laboratories Australia Pty Ltd for vertical and horizontal permeability and porosity testing. Samples were collected at approximately 10-20m intervals where possible. RPS Australia have been engaged to undertake an analysis of the permeability and porosity results, with the scope including:

- Provision of report that addresses the permeability and porosity results of cored samples;
- Statistical analysis of hydraulic parameters against stratigraphic units, utilising existing bore completion reports; and
- Comparison of core laboratory defined hydraulic parameters against packer testing and geophysical results.

RPS Australia are currently analysing the results of the permeability and porosity sampling, with a report due for completion in early November, 2015. This will be available from the *Energy and Engineering* Exploration Team upon request.

GEOPHYSICAL LOGGING

A geophysical log is a continuous record of measurements made by a probe able to respond to variations in some of the physical property of a rock mass. Weatherford were engaged by Illawarra Coal to compile a full suite of geophysical data, including:

- Gamma.
- Density.
- Multichannel Sonic (90 194.9m due to standing water level at 90m).
- Neutron (90 194.9m due to standing water level at 90m).
- Resistivity (90 194.9m due to standing water level at 90m).
- Verticality.
- Temperature (90 194.9m due to standing water level at 90m).
- Acoustic Scanner (90 194.9m due to standing water level at 90m).
- Optical Scanner (1-100m due to standing water level at 90m).

Geophysical data is available upon request from the *Energy and Engineering* Exploration Team. For a graphic report illustrating logged lithology and defects against key geophysical data, please refer to Appendix 1 - S2313 Lithology, Geotechnical and Geophysical Graphic

FLOWMETER AND NUCLEAR MAGNETIC (NMR) LOGGING

Surtron were engaged by Illawarra Coal to complete a flowmeter log, using their 9711 Impeller flowmeter. The Impeller flowmeter is a continuous velocity flowmeter log, which measures the fluid flow rates in open and cased wells. Low flow rates of 0.8 litres per second can be detected with the flowmeter. The results do not highlight any areas of significant flow. Complete results are available upon request from the *Energy and Engineering* Exploration Team. For a graphic report illustrating the flow results, refer to Appendix 4 - S2313 Flow Log Graphic.

Whilst conducting the flowmeter log, Surtron offered to trial a new instrument: the nuclear magnetic resonance (NMR) tool. The tool provides a matrix independent porosity, clay and capillary bound fluid and free fluid of the borehole. The results can be used for porosity and permeability calculations, and for characterising fractures. Preliminary results are available for S2313 from the NMR tool in the form of a graphic report that illustrates features including free fluid volume, capillary bound volume, clay bound volume and derived permeability (refer to Appendix 5 - S2313 NMR Log Graphic). Surtron are currently undertaking analysis and preparing a report.

INSTRUMENTATION

Ongoing monitoring of the hole is in the form of a time-domain reflector (TDR) cable, three piezometers and three water pumps. The TDR is a tool which monitors the development of shear movement experienced by the cable, post installation. The vibrating wire piezometers and micropurge pumps are standard equipment for hydrogeological monitoring. Due to the installation of the micropurge pumps for water sampling, muds were not used for drilling and no cement was used in the hole. Instrumentation installation in S2313 was completed on 25/09/2015, according to the array depicted in Figure 3.

Figure 3: S2313 Instrumentation array.

AVON DAM HOLE 2 (S2314)

DRILLING AND TESTING DETAILS

Lucas Drilling mobilised to site and commenced coring on 14/07/2015 with tracked drilling rig DRS096. During drilling operations, slight water loss occurred. Approximately 50% water loss was recorded around 50m, with water loss continuing throughout drilling at 50% water return rate. Coring continued to total depth of 131.7m, completed on 29/07/2015 (delayed due to wet weather).

Packer testing of the hole commenced on 30/07/2015 by Strata Control Technology (SCT), and completed on 03/08/2015. Geophysical logging of S2314 occurred from 03/08/2015-04/08/2015 by Weatherford. At the completion of logging, the hole was reamed out to 123mm by Lucas Drilling to enable sufficient room for equipment installation from 04/08/2015-07/08/2015, with drill rig demobilisation occurring on 07/08/2015. Flow and NMR logging was completed on 11/08/2015 by Surtron.

GEOLOGICAL LOGGING

All core was logged on site for lithology type and geotechnical defects. Detailed data is recorded in Micromine GBIS software package, and available upon request from the *Energy and Engineering* Exploration Team. Normal lithological conditions for the Hawkesbury Sandstone (HBSS), Newport Formation (NPFM), Garie Formation (GRFM), Bald Hill Claystone (BACS) and upper Bulgo Sandstone (BGSS) were encountered. Considerable bedding plane and joint fractures were recorded throughout the HBSS as expected, and were also moderately abundant in the BGSS. Several bedding planes were recorded in the BACS, although generally the core was less puggy and contained less jointed zones than the BACS observed in S2313. No faulting or major shearing was present in the core. A small defect zone logged as shear towards the base of the borehole is a very mechanically coherent unit.

For a graphic report illustrating logged lithology and defects against geophysical data, please refer to Appendix 6 - S2314 Lithology, Geotechnical and Geophysical Graphic. To view photography of the core, refer to Appendix 7 - S2314 Core Photography

PACKER TESTING AND FALLING HEAD TEST

SCT were engaged to complete Lugeon-style packer testing and hydraulic conductivity analysis on S2314. The scope of work involved packer testing from surface to the bottom of the borehole. A 6m straddle packer assembly was used to isolate sections of the borehole, and water injected into these zones to record hydraulic conductivity.

Results of the packer testing indicate that hydraulic conductivity of the strata ranged from less than 1.0⁻¹¹ m/s in the BACS and BGSS to a maximum of 1.3⁻⁶ m/s in the uppermost weathered section of the HBSS. The lower limit of the testing equipment is 1.0⁻¹¹ m/s. The results show a generally good correlation of decreasing hydraulic connectivity with increasing depth, particularly in the HBSS. This is a common result observed in packer testing as increasing confining stress acts on the strata.

A comparison of hydraulic conductivity with logged defects indicates that there is a good relationship between hydraulic conductivity and defects logged as joints (although there are some outliers present). Conductivity is notably higher in joints than those defects logged as bedding plane fractures. Furthermore, a significant number of joints and fractures were recorded in the two slightly higher conductivity zones in the BGSS from 118-130m (hydraulic conductivities of 2.6⁻⁷ m/s and 8.0⁻⁸ m/s). Lithology remains a principal control on hydraulic conductivity, with zero flow measured in the BACS. Zero flow was also recorded at the top of the BGSS, which corresponded with a fine-grained lithology and zero jointing/faulting.

These findings are summarised in the chart prepared by SCT in Figure 4.

Figure 4: Hydraulic conductivity summary for S2314.

The packer test report prepared by SCT is available from the *Energy and Engineering* Exploration Team upon request.

LABORATORY UCS GEOTECHNICAL TESTING

Twelve geotechnical samples were collated from core and sent to STS for testing of uniaxial, elastic and sonic properties. Samples were collected at approximately 10-20m intervals where possible, particularly concentrated around the BACSS and BGSS/CVSS. Results provide point data of the the UCS of the intact rock sample, which is the amount of compressive force per unit area applied in a single (uniaxial) direction required to induce failure. Lab UCS results on this borehole ranged widely from a minimum of 46.2 MPa in the upper weathered HBSS, to a maximum of 125.1 MPa at the base of the NPFM.

The results collated by STS are provided as Appendix 8 - S2314 Lab Geotechnical Results.

The lab UCS dataset acts as a useful comparison to UCS figures calculated from sonic geophysical data of the entire borehole (refer to Appendix 6 - S2314 Lithology, Geotechnical and Geophysical Graphic for this graphic). The UCS and sonic velocity are geophysical measurement of compression waves travelling through rock and are widely correlated to predict *in situ* rock strength.

PERMEABILITY/POROSITY TESTING OF CORE SAMPLES

Twelve samples were collated from core and sent to Core Laboratories Australia Pty Ltd for vertical and horizontal permeability and porosity testing. Samples were collected at approximately 10-20m intervals where possible, particularly concentrated around the BACSS and BGSS/CVSS. RPS Australia have been engaged to undertake an analysis of the permeability and porosity results, with the scope including:

- Provision of a report that addresses the permeability and porosity results of cored samples;
- Statistical analysis of hydraulic parameters against stratigraphic units, utilising existing bore completion reports; and
- Comparison of core laboratory defined hydraulic parameters against packer testing and geophysical results.

RPS Australia are currently analysing the results of the permeability and porosity sampling, with a report due for completion in early November, 2015. This will be available from the *Energy and Engineering* Exploration Team upon request.

GEOPHYSICAL LOGGING

Weatherford were engaged by Illawarra Coal to compile a full suite of geophysical data, including:

- Gamma.
- Density.
- Multichannel Sonic (21 131.6m due to standing water level at 21m).
- Neutron (21 131.6m due to standing water level at 21m).
- Resistivity (21 131.6m due to standing water level at 21m).
- Verticality.
- Temperature (23 131.6m due to standing water level at 21m).
- Acoustic Scanner (23 131.6m due to standing water level at 21m).
- Optical Scanner (1-30m due to standing water level at 21m).

Geophysical data is available upon request from the *Energy and Engineering* Exploration Team. For a graphic report illustrating logged lithology and defects against key geophysical data, please refer to Appendix 6 - S2314 Lithology, Geotechnical and Geophysical Graphic

FLOWMETER AND NUCLEAR MAGNETIC (NMR) LOGGING

Surtron were engaged by Illawarra Coal to complete a flowmeter log, using their 9711 Impeller flowmeter. The Impeller flowmeter is a continuous velocity flowmeter log, which measures the fluid flow rates in open and cased wells. Low flow rates of 0.8 litres per second can be detected with the flowmeter. The results do not highlight any areas of significant flow. Complete results are available upon request from the *Energy and Engineering* Exploration Team. For a graphic report illustrating the flow results, refer to Appendix 9 - S2314 Flow Log Graphic.

Whilst conducting the flowmeter log, Surtron offered to trial a new instrument: the nuclear magnetic resonance (NMR) tool. The tool provides a matrix independent porosity, clay and capillary bound fluid and free fluid of the borehole. The results can be used for porosity and permeability calculations, and for characterising fractures. Preliminary results are available for S2314 from the NMR tool in the form of graphic report that illustrates features including free fluid volume, capillary bound volume, clay bound volume and derived permeability (refer to Appendix 10 - S2314 NMR Log GraphicArrangements for Surtron to complete additional analysis and a report summarising key results are currently underway.

INSTRUMENTATION

Ongoing monitoring of the hole is in the form of a time-domain reflector (TDR) cable, three piezometers and three water pumps. The piezometers and pumps are set in sand packs, with piezometer/pump intervals separated by a bentonite and sand mixture. Instrumentation installation in S2314 commenced on 28/09/2015 and was completed on 06/10/2015, according to the array depicted in Figure 5.

Figure 5: S2314 Instrumentation array.

APPENDIX

APPENDIX 1 - S2313 LITHOLOGY, GEOTECHNICAL AND GEOPHYSICAL GRAPHIC

APPENDIX 2 - S2313 CORE PHOTOGRAPHY

- Committee at 10 pt - CKA	(
	Internal Accession of the second
Concerns to the set of the New York and the set of the set of the	

(51 5	e i		165 Str. 1
(60	1		(64) Sh - 1 (1)
C 181 C 3	d.		Carl n . Is a property for the second second
62	- 1 - 3	(H)	Calle (B is) - 1).

I	State of the second	67 1		CAN IN	La de la Marco de la	
1				Lange Theats	and the second second	
1		1 10 15) .	A STATISTICS	300 133	3
1		70 70 55 1 25 1 20		1	114	1

54	ew Waard I are to	140 I I	a		- Martin
and the second	54	(and)	1 - (+ LILL)	S (Contract of the second second
1	EX MERIOR OF A CARD	10 A	- ALLINE	of feel West Washington	1 53 11 1
3 0	Construction 1				BALLARA BALL - JAD -

Avon Dam Monitoring Boreholes Report24

the start is the second s	I that the second secon
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Carles and a state of the second second second second
1.53 (1)	The formation of the second se
102	(104) (104)

C	1 9 10 1	16.0	11 6	12 AT THE	in the	53
C		-	1	- I'		55 1)
E	44 (1/1) (30-)	138		Part -	1	The second second
			1	*	$\pm t \pm$	

TRUE Printed by Balance of Statistics and the

(198	Plat and	142	51
	(IRE)	2 1 1 4 4 1 M	
Constant I	190	S2 194	
Press and	I I SI CALLER CALLER		(a)

Į.

REPORT NUMBER: L2710 REPORT DATE: 10 Aug 2015

GEOTECHNICAL LABORATORY TEST REPORT

BHPBIC Resource & Exploration

S2313

8trata Lab 5.6.02 - May 2015

REPORT DATE: 10 Aug 2015

11

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 1 of
CLIENT:	BHPBIC		
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-01	ID/Mark/Depth:	GT1, 11.680 - 11.910
Rock Type:	S5	Storage:	Plastic wrapped, tested as received
TEST			
Date:	5 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement.	Electrical Strain Gauges
	RTA Test Method T224	Duration:	09:22 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m ³)	Moisture Content (%)	UCS (MPa)
60.8	152.0	2.267	5.1	36.0
Failure Mode	30-			10-
-Income				
	30-			
PH	20-		Set Security	to an inter
	(m15 20-		E. 4 1	
1 1	0		+ +	1
	đ 19	C Despension		
1.1	10	hangener	materia	
and the second				i.
- 140		2	1	
	0	and the second		1

Elastic Propert	ties	
Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
3.75 - 9.13	14.2	0.17
12.7 - 17.3	19.7	0.24
20.9 - 26.0	21.3	0.28

Sonic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0 / 0.0	2724	111.9	
2.0/2.0	3220	94.7	
5.0 / 5.0	3518	86.6	
10.0 / 10.0	3752	81.2	

Mean Data

COMMENTS

Accredited for compliance with ISO/IEC 17025.

REPORT DATE: 10 Aug 2015

11

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 2 of
CLIENT:	BHPBIC		
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-03	ID/Mark/Depth:	GT11, 175.090 - 175.330
Rock Type:	S3	Storage:	Plastic wrapped, tested as received
TEST			
Date:	5 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	13:12 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m³)	Moisture Content (%)	UCS (MPa)
61.0	156.3	2.634	2.2	70.6
Failure Mode	10-114	dinade		introl.
		\mathbf{i}		/
	80-	1	A	1
	50	· · · A · · · · · ·	1	
	7			
	¥0-	1911		
	an an			- Comp
		E 14.		
P.	20-	1.1.1	1	10.0
1	10-7-1	The second	/	
		1		
	0-2000	-1000 0	1000 2000 3000 Microstrain (µS)	4000 5000

Elastic Properties			
Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio	
6.06 - 14.0	21.1	0.27	
19.5 - 27.5	22.3	0.29	
48.2 - 55.9	21.2	0.32	

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0/0.0	3877	78.6	
2.0/2.0	3986	76.5	
5.0 / 5.0	4069	74.9	
10.0 / 10.0	4123	73.9	

Mean Data

COMMENTS

Accredited for compliance with ISO/IEC 17025.

REPORT NUMBER: 2710-YP

REPORT DATE: 10 Aug 2015

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 3 of 11
CLIENT:	BHPBIC		
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-04	ID/Mark/Depth:	GT12, 182.370 - 182.570
Rock Type:	ST	Storage:	Plastic wrapped, tested as received
TEST			
Date:	6 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	15:34 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m³)	Moisture Content (%)	UCS (MPa)
61.0	152.6	2.722	1.6	53.2
Failure Mode	-00		States in	1
1-1	40	A second	and a second second	1
NOT	35-			/1
1 Protection	W) 50-			
	20-	-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i	f in	
	15-			
Le .	5-	- sector	ff	i din har
	0 -3006	5 -2000 -1000 0	1000 2000 3000 4000 5 Microstrain (US)	000 6000 7000

Elastic Properties
Stress Young's

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
2.26 - 6.84	12.2	0.21
16.1 - 20.2	14.5	0.34
37.8 - 40.5	16.2	0.38

Sonic Properties

Axial/Confining	P-Wave	
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0 / 0.0	3952	77.1
2.0/2.0	4004	76.1
5.0 / 5.0	4047	75.3
10.0 / 10.0	4079	74.7

Single Data Sets Mean Data

COMMENTS

REPORT DATE: 10 Aug 2015

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 4 of 11
CLIENT:	BHPBIC		211960 (1911)
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-05	ID/Mark/Depth:	GT13, 194.220 - 194.460
Rock Type:	S2	Storage:	Plastic wrapped, tested as received
TEST			
Date:	6 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	10:45 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m³)	Moisture Content (%)	UCS (MPa)
61.0	156.7	2.338	6.9	54.7
Failure Mode	00-	Level and	-1	in tr
1 -1	50-			
		Julia	Judichercher	he free
	ao-) -	storiorio	(userena)	1
in Viet	36-144	Secolar de .	- promote	1
2.4-1		dered en der	- Andrewski - Andrewski	1
4.1	320	3-+-+		4
1901	20-	Scother Bo	and a comp	(g=(x,) X +
120	10-	40 H 10.40	and the second co	4 10 m (com
ENY	10-	Norther de		8.9
- Junt	0	()	/	4
	0 5000 -	4000 -3000 -2000	-1000 0 1000 2000 1	1 1 1

Elastic Properties

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
8.38 - 13.9	13.3	0.15
19.2 - 27.6	20.3	0.22
32.9 - 41.2	22.6	0.32

Sonic Properties

Axial/Confining	P-Wave	
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0 / 0.0	3230	94.4
2.0/2.0	3340	91.2
5.0 / 5.0	3497	87.2
10.0 / 10.0	3775	80.7

Mean Data

COMMENTS

Accredited for compliance with ISO/IEC 17025.

REPORT NUMBER: 2710-YP

REPORT DATE: 10 Aug 2015

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 5 of 11
CLIENT:	BHPBIC		2019-00-00
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-06	ID/Mark/Depth:	GT2, 21.460 - 21.710
Rock Type:	S3	Storage:	Plastic wrapped, tested as received
TEST			
Date:	6 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	10:51 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m³)	Moisture Content (%)	UCS (MPa)
60.8	154.2	2.466	3.4	11.2
Failure Mode	··		1	17
The d	10		Gradansferref	for the second
TTA	9			18. T
141		dana a	finger in fine	
	W e-	A. A.	and A.s.	opoie-
1 The	Street	Ser St	and the former	이 좋아 아름다.
H	-	and A	1	
	2	+++++++++++++++++++++++++++++++++++++++		
L'id	1		A	
	0-000	4000 2000	a 2000 4000 6000 Microstrain (US)	1 1 00001 0000

Elastic Properties

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
1.14 - 2.51	1.45	0.17
3.34 - 4.62	3.56	0.19
5.89 - 6.89	5.52	0.23

Sonic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0 / 0.0	3179	95.9	
2.0/2.0	3337	91.3	
5.0 / 5.0	3472	87.8	
10.0 / 10.0	3610	84.4	

Mean Data

COMMENTS

Accredited for compliance with ISO/IEC 17025.

REPORT DATE: 10 Aug 2015

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 6 of 11
CLIENT:	BHPBIC		2119-01-01-01-01
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-08	ID/Mark/Depth:	GT4, 42.490 - 42.740
Rock Type:	S3	Storage:	Plastic wrapped, tested as received
TEST			
Date:	6 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	20:06 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m ³)	Moisture Content (%)	UCS (MPa)
60.9	151.3	2.326	7.4	16.5
Failure Mode	10		5	T.
21. 1. 1				1
0	14		M	1
K III	12-11-	a far a starter a	A second second second	A- q-a-
nt IL	10- · · ·	ala alar	and the second second	en fin
26.	5 m-1	i dan dan	al deriver to	(nám)
H & LOL	ā	. Sandari		
		A	A A	1
14	1			1
10	3-10-	Ser Ser		ii qina
	0 4000	1 1		

Elastic Properties				
Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio		
1.54 - 3.57	4.95	0.17		
4.84 - 6.97	8.31	0.25		
11.5 - 13.5	11.0	0.39		

Sonic Properties

Axial/Confining	P-'	Wave
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0 / 0.0	3056	99.7
2.0/2.0	3212	94.9
5.0 / 5.0	3325	91.7
10.0 / 10.0	3461	88.1

Mean Data

COMMENTS

Accredited for compliance with ISO/IEC 17025.

REPORT DATE: 10 Aug 2015

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 7 of 11
CLIENT:	BHPBIC		And a second second second
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-09	ID/Mark/Depth:	GT5, 54.320 - 54.570
Rock Type:	S4	Storage:	Plastic wrapped, tested as received
TEST			
Date:	6 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	29:18 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m³)	Moisture Content (%)	UCS (MPa)
60.8	154.8	2.507	3.4	37.1
Failure Mode			1 1 1 1 1	1
10100	46-	14144	× 1999-199	1
	30-0 -0	ner e av	A second	and from
A THE V	20		1	f
113-1		+1.1	8 4 8 8 8	18 8
1 1	W 20-	空空空	din dinini	hàn iện c
	10-		1	
Tay		1.1.1	A A	6.3
States .	19-	a decide rede		1.1
No.	0-11	a de calendes		· · · · · · · · · · · · · · · · · · ·
STATE OF THE OWNER		1-1-1	A A A A A A A A A A A A A A A A A A A	1 1 1

Elastic Properties

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
2.96 - 5.34	7.74	0.13
12.6 - 15.6	15.5	0.22
27.7 - 30.1	19.1	0.34

Sonic Properties

Axial/Confining Pressures (MPa)	P-Wave	
	Velocity (m/s)	Travel Time (µS/ft)
0.0 / 0.0	3550	85.9
2.0/2.0	3676	82.9
5.0/5.0	3793	80.4
10.0 / 10.0	3918	77.8

Mean Data

COMMENTS

Sample ID: GT5

StrataLab 5.6.02 - May 2015

REPORT DATE: 10 Aug 2015

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 8 of 11
CLIENT:	BHPBIC		761904 0 0111
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-10	ID/Mark/Depth:	GT6, 71.750 - 71.980
Rock Type:	G1	Storage:	Plastic wrapped, tested as received
TEST			
Date:	6 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement.	Electrical Strain Gauges
	RTA Test Method T224	Duration:	12:57 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m³)	Moisture Content (%)	UCS (MPa)
60.8	153.1	2.355	5.7	34.5
Failure Mode	36-1			1
7	30-	usiun		
1 All	26-			
	(a 20 -		u din din d	1
	19-	afaank		
	10	ainai		unie
		ağınış.		
all the second		3 3		

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
4.06 - 7.27	15.7	0.24
8.99 - 13.9	21.0	0.27
22.6 - 27.8	24.0	0.41

Sonic Properties

Elastic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0 / 0.0	3593	84.8	
2.0/2.0	3855	79.1	
5.0 / 5.0	4039	75.5	
10.0 / 10.0	4216	72.3	

Mean Data

COMMENTS

REPORT DATE: 10 Aug 2015

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 9 of 11
CLIENT:	BHPBIC		
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-11	ID/Mark/Depth:	GT7, 97.050 - 97.260
Rock Type:	S3	Storage:	Plastic wrapped, tested as received
TEST			
Date:	6 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	10:31 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m³)	Moisture Content (%)	UCS (MPa)
60.9	158.3	2.330	7.3	27.6
Failure Mode				1
No.	25-11		- Senterny	
La barrent				1
L. Carlot	20-		a marine contracto	1
HALF AND	(a)	8 B 1		
1	W 10-	Ser Cherry	"to the f	
u.	Stree			
18 B	10-		A A	
A CONTRACT				
9	-			
the stand		1 1		1 1
	0 30	00 2000 -10	000 0 1000 2000	3000 44

Elastic Properties

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
4.63 - 8.65	9.19	0.17
9.37 - 14.3	13.0	0.23
16.0 - 20.8	14.7	0.32

Sonic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0 / 0.0	3055	99.8	
2.0/2.0	3097	98.4	
5.0/5.0	3311	92.1	
10.0 / 10.0	3486	87.4	

Mean Data

COMMENTS

REPORT NUMBER: 2710-YP

REPORT DATE: 10 Aug 2015

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 10 of 11
CLIENT:	BHPBIC		
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-12	ID/Mark/Depth:	GT8, 139.610 - 139.820
Rock Type:	S5	Storage:	Plastic wrapped, tested as received
TEST			
Date:	7 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	19:56 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m ³)	Moisture Content (%)	UCS (MPa)
60.9	158.2	2.411	4.6	60.9
Failure Mode	80	1 1	1.1.1.1.1	· · · ·
- Panalant	60-	-7	···· /······	
The sector	50-		and a share	met and
	45	di en interes	alound and a set	second - sugar a
Alt and	40-7	in a seco	des submission	and the states of
	8 30-	it is a fire	Service and a service	e - far - stars
in the second	8-30-1	1/111/-11	tree dent	- Conten
CAR TO	Ø 25	ali a filipas	further brid	- der igen
C. C	20-	$(-\frac{1}{2},1)=(-\frac$	Decedent to a	
AND STA	18	ajandeo	deserve for the	Ca Caleanaican
The Take	10	dia interest	hand had been for	
and the	a-)	distant.	Sugar 1	contraster a

Elastic Properties

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
6.11 - 10.9	20.1	0.17
15.2 - 21.0	27.7	0.21
34.7 - 41.6	32.1	0.26

Sonic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0 / 0.0	3721	81.9	
2.0/2.0	3877	78.6	
5.0/5.0	4076	74.8	
10.0 / 10.0	4275	71.3	

Mean Data

COMMENTS

REPORT DATE: 10 Aug 2015

REPORT NUMBER: 2710-YP

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

			PAGE: 11 of 11
CLIENT:	BHPBIC		
	Resource & Exploration		
Project:	S2313		
SAMPLE			
Specimen:	2710-13	ID/Mark/Depth:	GT9, 156.900 - 157.190
Rock Type:	MS	Storage:	Plastic wrapped, tested as received
TEST			
Date:	7 Aug 2015	Test Machine:	CMA & CONTROLS & Celtron LCD100k
Methods:	AS 4133.4.3.1 - 2009	Measurement:	Electrical Strain Gauges
	RTA Test Method T224	Duration:	19:27 (mm:ss)

RESULTS

Diameter (mm)	Length (mm)	Density (t/m ³)	Moisture Content (%)	UCS (MPa)
60.9	154.7	2.639	1.1	98.9
Failure Mode	100-1	1-4-1-4		· · · · J_ · · · · J_
1	30-	Viendie	-line breek	· ····
ALL RA	110-	America	ale marine	1 former
	vo- +	- the store		1
	200-	a de la ser		and an other
144	9 50-	ada a dan	1	
CO. BANK	Street	1	1	£ . £
			A	
			1	
-	20- 1 -		1	CT011110-53
	10-110		Chesterile	CONTROL OF
	0.4	1 V	1 1 1	1 X

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
5.42 - 14.4	24.9	0.17
32.6 - 40.7	28.7	0.22

30.1

0.25

Sonic Properties			
Axial/Confining	P-1	Wave	
Preseures	A desta with a	Two	

Elastic Properties

65.9 - 73.8

Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0 / 0.0	4261	71.5
2.0/2.0	4308	70.8
5.0 / 5.0	4332	70.4
10.0 / 10.0	4357	70.0

Mean Data

COMMENTS

Approved Signatory Peter Fulko

APPENDIX 4 - S2313 FLOW LOG GRAPHIC

G	DT	POA	1	тоо	L: 9710	A		
100	KI	RUN		TOO	L S/N:	211		
WIR	ELINE	SERVICES		WEL	L: S23	13		
COMPANY FIELD DATE TIME	4 32 15	LOCATION DSC AVON 1 STATE NSW DRILL DEPTH 194.75 BIT SIZE 12.3			COUNTY ILLAWARRA LOGGING CO. SURTRON FIRST READING 97.70 LOG BOTTOM 194.60			
LOGGING UNIT V034 FIELD ENGINEER MLJ1 WITNESSED BY RIG NUMBER			LOG FROM DRILL FROM LATITUDE 207521 LONGITUDE 6192619		CASING TYPE STEEL CASING SIZE CASING BOTT. 6 COUNTRY			
LICENSE SE	CTION	TOWNSHIP	RANGE	PERMANENT	DATUM	ELEVA KB DF	TIONS GL	
RUN NUMBER	1		ENCO	ENCODER CAL 0.09788		OTHER SERVICES		
SAMPLE INT.	.10	1	SOTWARE VER		3.60E			
LOG DIRECTIO	N D		SYS SERIAL		1	1.	1.	
DEPTH UNIT	M	-	WELL EXT.			2.		
ENG OR CPS	E		LOGGER TD			- 3.		
ELECT CUTOFF	999	99	ARRIVAL				Sec.	
APINO			DEPART			REMA	RKS	
CASING OD	14		MAG DECL.		8.28	1.		
FLUID TYPE	0		FILE TYPE		PROCESSED			
UWI			CASIN	IG THICK	0	2.		
AVE SURF TEN	P		MUD S	SAMPLE SCE	0	RES MUD CAKE	0	
TEMP GRADIEN	IT	0	MUDF	RES	0	TEMP MUD CAKE		
DENSITY MATE	XL	2.65	MUD T	EMP	0	FLUID VISCOSITY		
NEUTRON MATRIX SANDSTONE		RESN	IUD FILT.		FLUID DENSITY	1.0		
DELTAT MATRI	X	177	TEMP	MUD FILT.		FLUID PH		
DELTAT FLUID			TIME	CIRC. STOP				
			I	WPORTANT	NOTE			

The following interpretations are opinions based upon interences from borehole logs, Surtron Technologies (Australia) Pty Ltd cannot and does not guarantee the correctness or accuracy of any interpretations. Therefore Surtron Technologies (Australia) Pty Ltd shall not be liable or responsible for any loss, damage, cost or expense incurred or sustained by anyone resulting from any interpretations.

					a lettransetterer	1	OGGING RATE D	OWN			
		Depth			5		NI/MIN			15	
			21	1.25			UP FLOW				
	_				2		M/MEV		15		
	C	ALIPE	R	-			LOGGING RATE	UP			
	100	MM	180	1m:100m	5		M/MN			15	
GAM(NAT) BI		ITSIZ		1.1.1	DOWN FLOW						
0 API 250	100 MM 18	180		5		M/Me a			15		
Annon Marin Marin				100.0 101.0 102.0 103.0			~/				

APPENDIX 5 - S2313 NMR LOG GRAPHIC

Page 1

Page 2

NB: Explanation of codes on NMR graphic:

GR/ GAM - Gamma Ray measurements

Caliper – Hole size (from the density caliper)

Res – Medium Guard Resistivity (from the density tool)

R2R4 – Compressional Slowness from the sonic tool

DEN – Compensated Density

POR(NEU) – Neutron Porosity (Sandstone Matrix)

TPOR – Total porosity from the NMR tool

POR(DEN) – Calculated density porosity using a sandstone matrix.

FFV – Free Fluid Volume from the NMR (the fluid which will flow)

CAPW – Capiliary Bound Volume from the NMR

CBWV – Clay Bound Volume from the NMR

T2DIST – The NMR T2 distribution from the NMR – this is the distribution the NMR measures that is then used to produce the other curves.

KTIM – Permeability derived from the NMR data with the Timor-Coates equation.

Page 3

APPENDIX 6 - S2314 LITHOLOGY, GEOTECHNICAL AND GEOPHYSICAL GRAPHIC

APPENDIX 7 - S2314 CORE PHOTOGRAPHY

	C C C C C C C C C C C C C C C C C C C
d 55 1 14	
55 195	

the second as seen that	and the second s
Line has his	- Children dameni dele aj esperied di este articitare) - Spin de de communes
	fer dieter merting mer einer in beine bereiten versichen mertingen

	Verlagen and the second second second
California de la calegra de la constante de la	

2/45 70%	
116	Car al A CAR N AD MA
	Color Aller I I and

REPORT NUMBER: L2737 REPORT DATE: 22 Sep 2015

GEOTECHNICAL LABORATORY TEST REPORT

South32 IC Resource & Exploration

Geotechnical Testing - BH: S2314

REPORT NUMBER: 2737-YP-1

REPORT DATE: 22 Sep 2015 PAGE: 1 of 12

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

2737-01

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S23*

SAMPLE

Specimen: 273 Rock Type: S4

TEST

Date: Methods:

AS 4133.4.3.1 - 2009 RTA Test Method T224

18 Sep 2015

Test Machine: CMA & CONTROLS & Celtron LCD100k Measurement: Electrical Strain Gauges Duration: 20:39 (mm:ss)

Plastic wrapped, tested as received

ID/Mark/Depth: GT1, 7.950 - 8.150

Storage:

RESULTS

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
2.79 - 5.68	11.2	0.18
9.37 - 13.5	18.4	0.22
28.3 - 33.6	24.7	0.32

Sonic Properties

Axial/Confining Pressures (MPa)	P-Wave	
	Velocity (m/s)	Travel Time (µS/ft)
0.0/0.0	3389	89.9
2.0/2.0	3589	84.9
5.0/5.0	3842	79.3
10.0 / 10.0	4004	76.1

Mean Data

COMMENTS

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: 2737-02 Rock Type: S2

TEST

Date: Methods:

11 Sep 2015 AS 4133.4.3.1 - 2009 RTA Test Method T224

REPORT DATE: 22 Sep 2015 PAGE: 2 of 12

REPORT NUMBER: 2737-YP-1

ID/Mark/Depth: GT10, 116.280 - 116.500 Storage: Plastic wrapped, tested as received

Test Machine: CMA & CONTROLS & Celtron LCD100k Measurement: Electrical Strain Gauges Duration: 08:46 (mm:ss)

RESULTS

Elastic Properties Stress Young's Poisson's Range Modulus Ratio (MPa) (GPa) 8.56 - 15.3 16.0 0.17 25.7 - 31.0 21.9 0.21 41.5 - 47.4 23.9 0.28

Sonic Properties

Axial/Confining	P-Wave	
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0/0.0	3629	84.0
2.0/2.0	3709	82.2
5.0 / 5.0	3791	80.4
10.0 / 10.0	3887	78.4

Mean Data

COMMENTS

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

South32 IC
Resource & Exploration
Geotechnical Testing - BH: S2314

SAMPLE

Specimen: 2737-03 Rock Type: S3

TEST

Date: Methods: 14 Sep 2015 AS 4133.4.3.1 - 2009 RTA Test Method T224 REPORT DATE: 22 Sep 2015 PAGE: 3 of 12

REPORT NUMBER: 2737-YP-1

ID/Mark/Depth: GT11, 127.150 - 127.370 Storage: Plastic wrapped, tested as received

 Test Machine:
 CMA & CONTROLS & Celtron LCD100k

 Measurement:
 Electrical Strain Gauges

 Duration:
 14:41 (mm:ss)

RESULTS

Elastic Properties Stress Young's Poisson's Modulus Range Ratio (MPa) (GPa) 6.30 - 12.1 20.5 0.26 18.4 - 24.2 23.0 0.30 48.1 - 52.9 25.2 0.34

Sonic Properties

Axial/Confining	P-Wave	
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0/0.0	4107	74.2
2.0/2.0	4152	73.4
5.0 / 5.0	4175	73.0
10.0 / 10.0	4209	72.4

Mean Data

COMMENTS

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: 2737-04 Rock Type: **S**3

TEST

Date: Methods: 14 Sep 2015 AS 4133.4.3.1 - 2009 RTA Test Method T224

REPORT NUMBER: 2737-YP-1 REPORT DATE: 22 Sep 2015 PAGE: 4 of 12

ID/Mark/Depth: GT12, 131.370 - 131.550 Storage: Plastic wrapped, tested as received

Test Machine: CMA & CONTROLS & Celtron LCD100k Measurement: Electrical Strain Gauges Duration: 08:37 (mm:ss)

Г

RESULTS

Chan Т 1

Elastic Properties

Range (MPa)	Modulus (GPa)	Poisson's Ratio
9.58 - 17.7	14.8	0.20
29.1 - 37.4	20.4	0.29

Sonic Properties

Axial/Confining	P-Wave	
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0/0.0	3662	83.2
2.0/2.0	3698	82.4
5.0 / 5.0	3800	80.2
10.0 / 10.0	3918	77.8

Mean Data

COMMENTS

REPORT NUMBER: 2737-YP-1

REPORT DATE: 22 Sep 2015 PAGE: 5 of 12

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

2737-05

S4

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: Rock Type:

TEST

Date: Methods: 14 Sep 2015 AS 4133.4.3.1 - 2009 RTA Test Method T224
 Storage:
 Plastic wrapped, tested as received

 Test Machine:
 CMA & CONTROLS & Celtron LCD100k

 Measurement:
 Electrical Strain Gauges

11:46 (mm:ss)

ID/Mark/Depth: GT2, 29.650 - 29.860

Duration:

RESULTS

 Elastic Properties

 Stress Range (MPa)
 Young's Modulus (GPa)
 Poisson's Ratio

 4.86 - 8.66
 15.9
 0.16

 13.9 - 20.9
 22.7
 0.22

25.8

0.29

Sonic Properties

34.3 - 40.0

Axial/Confining	P-Wave	
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0 / 0.0	3339	91.3
2.0/2.0	3445	88.5
5.0 / 5.0	3741	81.5
10.0 / 10.0	3955	77.1

Mean Data

COMMENTS

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

2737-06

G1

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: Rock Type:

TEST

Date:	
Methods:	

AS 4133.4.3.1 - 2009 RTA Test Method T224

14 Sep 2015

REPORT DATE: 22 Sep 2015 PAGE: 6 of 12

REPORT NUMBER: 2737-YP-1

ID/Mark/Depth: GT3, 53.160 - 53.410 Storage: Plastic wrapped, tested as received

 Test Machine:
 CMA & CONTROLS & Celtron LCD100k

 Measurement:
 Electrical Strain Gauges

 Duration:
 13:33 (mm:ss)

RESULTS

Stress Young's Poisson's Modulus Range Ratio (MPa) (GPa) 4.00 - 7.32 0.16 18.4 20.7 - 25.7 33.3 0.21 39.3 - 43.1 37.2 0.31

Sonic Properties

Elastic Properties

Axial/Confining	P-1	Wave
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0/0.0	3826	79.7
2.0/2.0	4046	75.3
5.0 / 5.0	4293	71.0
10.0 / 10.0	4467	68.2

Mean Data

COMMENTS

Accredited for compliance with ISO/IEC 17025.

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

CLIENT:	South32 IC
	Resource & Exploration
Project	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: 2737-07 Rock Type: S3

TEST

Date: Methods: 14 Sep 2015 AS 4133.4.3.1 - 2009 RTA Test Method T224

REPORT DATE: 22 Sep 2015 PAGE: 7 of 12

REPORT NUMBER: 2737-YP-1

ID/Mark/Depth: GT4, 72.170 - 72.380 Storage: Plastic wrapped, tested as received

 Test Machine:
 CMA & CONTROLS & Celtron LCD100k

 Measurement:
 Electrical Strain Gauges

 Duration:
 08:00 (mm:ss)

RESULTS

Elastic Properties Stress Young's Poisson's Modulus Range Ratio (MPa) (GPa) 6.78 - 12.1 15.7 0.23 17.3 - 27.0 23.0 0.26 31.1 - 39.2 25.3 0.34

Sonic Properties

Axial/Confining	P-1	Wave
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0/0.0	3503	87.0
2.0/2.0	3707	82.2
5.0 / 5.0	3927	77.6
10.0 / 10.0	4096	74.4

Mean Data

COMMENTS

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

CLIENT:	South32 IC
	Resource & Exploration
Project	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: 2737-08 Rock Type: YS

TEST

Date:	14 Sep 2015
Methods:	AS 4133.4.3.

AS 4133.4.3.1 - 2009 RTA Test Method T224 PAGE: 8 of 12

REPORT NUMBER: 2737-YP-1

REPORT DATE: 22 Sep 2015

ID/Mark/Depth: GT5, 85.130 - 85.320 Storage: Plastic wrapped, tested as received

 Test Machine:
 CMA & CONTROLS & Celtron LCD100k

 Measurement:
 Electrical Strain Gauges

 Duration:
 09:14 (mm:ss)

RESULTS

Elastic Properties

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
6.64 - 12.2	13.2	0.29
19.9 - 25.8	14.4	0.33
33.8 - 39.2	15.0	0.36

Sonic Properties

Axial/Confining	P-1	Wave
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0 / 0.0	3671	83.0
2.0/2.0	3690	82.6
5.0/5.0	3708	82.2
10.0 / 10.0	3735	81.6

Mean Data

COMMENTS

REPORT NUMBER: 2737-YP-1

REPORT DATE: 22 Sep 2015 PAGE: 9 of 12

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

2737-09

G1

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: Rock Type:

TEST

14 Sep 2015	
AS 4133.4.3.1	

.4.3.1 - 2009 RTA Test Method T224 ID/Mark/Depth: GT6, 93.300 - 93.510 Plastic wrapped, tested as received

Test Machine: CMA & CONTROLS & Celtron LCD100k Measurement: Electrical Strain Gauges Duration: 06:17 (mm:ss)

Storage:

RESULTS

Elastic Properties Stress Young's Poisson's Range Modulus Ratio (MPa) (GPa) 17.4 - 36.7 46.2 0.29 59.2 - 82.6 48.4 0.32

Sonic Properties

Axial/Confining	P-1	Wave
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)
0.0/0.0	5242	58.1
2.0/2.0	5260	57.9
5.0/5.0	5278	57.7
10.0 / 10.0	5297	57.5

Mean Data

COMMENTS

REPORT NUMBER: 2737-YP-1

REPORT DATE: 22 Sep 2015 PAGE: 10 of 12

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

2737-10

ST

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: Rock Type:

TEST

Date:	
Methods:	

14 Sep 2015 AS 4133.4.3.1 - 2009 RTA Test Method T224

ID/Mark/Depth: GT7, 95.720 - 95.980 Plastic wrapped, tested as received

Test Machine: CMA & CONTROLS & Celtron LCD100k Measurement: Electrical Strain Gauges 06:34 (mm:ss) Duration:

Storage:

RESULTS

Elastic Properties Stress Young's Poisson's Modulus Range Ratio (MPa) (GPa) 11.9 - 23.6 21.5 0.27 34.7 - 43.9 23.1 0.31 58.2 - 66.7 22.7 0.32

Sonic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0/0.0	3929	77.6	
2.0/2.0	3960	77.0	
5.0/5.0	3981	76.6	
10.0 / 10.0	4012	76.0	

Mean Data

COMMENTS

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

CLIENT: South32 IC Resource & Exploration Project: Geotechnical Testing – BH: S2314

2737-11

MS

SAMPLE

Specimen: Rock Type:

TEST

Date: Methods: 14 Sep 2015 AS 4133.4.3.1 - 2009 RTA Test Method T224 PAGE: 11 of 12

REPORT NUMBER: 2737-YP-1

REPORT DATE: 22 Sep 2015

ID/Mark/Depth: GT8, 109.860 - 110.050 Storage: Plastic wrapped, tested as received

 Test Machine:
 CMA & CONTROLS & Celtron LCD100k

 Measurement:
 Electrical Strain Gauges

 Duration:
 11:24 (mm:ss)

RESULTS

Elastic Properties Stress Young's Poisson's Modulus Range Ratio (MPa) (GPa) 8.18 - 20.7 0.26 25.8 28.1 - 38.8 26.6 0.29 68.6 - 76.7 26.0 0.31

Sonic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0/0.0	4277	71.3	
2.0/2.0	4288	71.1	
5.0/5.0	4325	70.5	
10.0 / 10.0	4337	70.3	

Mean Data

COMMENTS

REPORT NUMBER: 2737-YP-1

REPORT DATE: 22 Sep 2015 PAGE: 12 of 12

GEOTECHNICAL LABORATORY TEST REPORT

UNIAXIAL PROPERTIES

2737-12

S1

CLIENT:	South32 IC
	Resource & Exploration
Project:	Geotechnical Testing - BH: S2314

SAMPLE

Specimen: Rock Type:

TEST

Date:	14 Sep 2015
Methods:	AS 4133.4.3.

AS 4133.4.3.1 - 2009 RTA Test Method T224 ID/Mark/Depth: GT9, 111.010 - 111.230 Plastic wrapped, tested as received

Test Machine: CMA & CONTROLS & Celtron LCD100k Measurement: Electrical Strain Gauges Duration: 15:45 (mm:ss)

Storage:

RESULTS

Stress Range (MPa)	Young's Modulus (GPa)	Poisson's Ratio
6.88 - 17.0	21.0	0.29
24.6 - 33.3	21.6	0.32
41.4 - 48.9	21.8	0.33

Sonic Properties

Elastic Properties

Axial/Confining	P-Wave		
Pressures (MPa)	Velocity (m/s)	Travel Time (µS/ft)	
0.0/0.0	4189	72.8	
2.0/2.0	4213	72.4	
5.0 / 5.0	4219	72.3	
10.0 / 10.0	4242	71.9	

Mean Data

COMMENTS

Julio Miranda Approved Signatory..... Sample ID: GT9

ab 5.6,02 - May 2015

	VIREL	NE	SERVICES		WEL	L: S23	14	
COMPANY BHP FIELD SOUTH 32 DATE 08/11/15 TIME 10:02:		LOCATION DSC AVON 2 STATE NSW DRILL DEPTH 131.8 BIT SIZE 12.3		COUNTY ILLAWARRA LOGGING CO. SURTRON FIRST READING 22.20 LOG BOTTOM 131.10				
LOGGING UNIT V034 FIELD ENGINEER MLJ1 WITNESSED BY RIG NUMBER		LOG FROM DRILL FROM LATITUDE LONGITUDE			CASING TYPE STEEL CASING SIZE CASING BOTT. 2.3 COUNTRY			
LICENSE	SECTION	ON	TOWNSHIP	RANGE	PERMANENT ELEV. PERM.	DATUM	ELEV KB DI	ATIONS = GL
RUN NUM	BER			ENCO	DER CAL	0.09788	(and the second	
SAMPLE I	NT.	.10	0	SOTWARE VER 3.60E SYS SERIAL 1 WELL EXT. 1		3.60E	OTHER	SERVICES
LOG DIRE	CTION	D				7 1.		
DEPTH UN	IIT	M					- 2.	
ENG OR C	PS	E		LOGG	ER TD		3.	
ELECT CU	TOFF	99	999	ARRIV	AL.	-	DEMARKO	
APINO				DEPA	RT		REN REN	ARNS
CASING O	D	14	(MAG	DECL.	8.28	1. S/0=0.02CM	
FLUID TYP	E	0		FILE T	YPE	PROCESSED	2	
UWI				CASING THICK		0	2. DOWN RUN	
AVE SURF	TEMP			MUD S	SAMPLE SCE	0	RES MUD CAKE	0
TEMP GRA	DIENT		0	MUD F	RES	0	TEMP MUD CAKE	
DENSITY I	MATRIX		2,65	MUD TEMP		0	FLUID VISCOSITY	
NEUTRON	MATRIX		SANDSTONE	RES MUD FILT.			FLUID DENSITY	1.0
DELTAT M	ATRIX		177	TEMP MUD FILT.			FLUID PH	1
DELTAT F	LUID			TIME	CIRC. STOP			
				1	MPORTANT	NOTE		

APPENDIX 10 - S2314 NMR LOG GRAPHIC

۵	COMPANY				
	COMPANY WELL ID FIELD COUNTRY			s	FATE
	LOCATION				0
CO WELL FLD CTY STE FILING No	SEC	TWP	RG	a.	
PERMANENT DATUM			ELEVATIO	Z	X
LOG MEAS, FROM		AB	OVE PERML DAT	TUM	8
DRILLING MEAS: FROM	1				G
DATE	_		TYPE FLU	TOH NI OIL	
RUN No	_		SALIN	TTY	
TYPE LOG			DENS	TY	
DEPTH-DRILLER			LEVE		
DEPTH-LOGGER			MAX. RE	C. TEMP.	
BIM LOGGED INTERVA	F				
TOP LOGGED INTERVAL					
OPERATING RIG TIME					
RECORDED BY	+		+		
WINNESSED B1					
RUN BOREHOLE RE	CORD		CASING	RECORD	
	ROM	TO	SIZE	WGI.	FROM
NO. BIT F					Ħ
NO. BIT F					
NO. BIT F					-

NB: Explanation of codes on NMR graphic:

GR/ GAM – Gamma Ray measurements
Caliper – Hole size (from the density caliper)
Res – Medium Guard Resistivity (from the density tool)
R2R4 – Compressional Slowness from the sonic tool
DEN – Compensated Density
POR(NEU) – Neutron Porosity (Sandstone Matrix)
TPOR – Total porosity from the NMR tool
POR(DEN) – Calculated density porosity using a sandstone matrix.
FFV – Free Fluid Volume from the NMR (the fluid which will flow)
CAPW – Capiliary Bound Volume from the NMR
CBWV – Clay Bound Volume from the NMR
T2DIST – The NMR T2 distribution from the NMR – this is the distribution the NMR
measures that is then used to produce the other curves.
KTIM – Permeability derived from the NMR data with the Timor-Coates equation.